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Abstract

The buoyancy-induced thermal ¯uid instability between two parallel horizontal plates has been investigated nu-

merically by solving the governing equations of base and perturbation ®elds using a fractional algorithm, in which the

fourth-order Adams scheme and the Bi-CGSTAB scheme are embedded. An initial assumption of the perturbed

temperature was made by a Gaussian random number generator. A primitive static ¯uid with Prandtl number 0.73 was

induced to ¯ow in the gap between the two horizontal parallel plates for three di�erent cases: top heating, bottom

heating and heating from both plates. The kinetic energy of induced ¯ow in each vertical section and in the whole

domain was calculated. The results can demonstrate whether the thermal ¯uid ¯ow is stable or unstable. A linear

decaying behavior is found after the initial stage. The total ¯uid kinetic energy in the domain converges for the top

heating case, but diverges for the other two heating cases. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Buoyancy-induced convection between two parallel

plates is a classical problem [1]. However, despite its

apparent simplicity, the detailed heat transfer mech-

anism and ¯uid ¯ow patterns are still worthy of careful

study. The investigation on thermal ¯uid instability was

raised when research on natural ventilation in buildings

was carried out.

To date, a large amount of works have been devoted

to this heat transfer phenomenon. One early piece of

work on laminar natural convection in plate wall

channel was undertaken [2]. However, the majority of

research on natural convection has been reported since

the early 1980s. For the purpose of understanding ¯ow

patterns and heat transfer near a wall, a theoretical

analysis of vortex instability over horizontal and in-

clined heated surfaces was reported by Chen and Tzuoo

[3]. They illustrated the neutral stability curves by solv-

ing an eigenvalue problem derived from the governing

equations of perturbation quantities with the base ¯ow.

They also indicated that the base ¯ow is governed by the

two-dimensional steady boundary layer equations in

pseudo-similarity coordinates, which can be solved by

the Runge±Kutta integration scheme. These stability

curves were compared with experimental results and

approximate analysis without considering the e�ect of a

streamwise pressure gradient term. It was found that, for

small angles of inclination (0� < / < 30�), there is a new

vortex instability, and for large angles of inclination

(30� < /6 90�), more accurate results than before have

been obtained.

Yousef et al. [4] reported the experimental results

of free convection from an upward-facing isothermal

horizontal surface to obtain the physical nature of the

boundary layer ¯ow. Surprisingly, they found that the

periodic ¯ow instability e�ects were substantially im-

portant. The ¯ow instability induced large, random

changes in local and average Nusselt number, which

underscored the under-stable nature of the ¯ow over a

horizontal heated surface. The boundary layer is sep-

arated from the plate at a distance, which is independent

of the plate size and temperature. The natural convection
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in a plate wall channel is not quite similar to the case of

a single plate, but the physical nature of heat transfer

near a wall is the same.

Narusawa and Suzukawa [5] performed an exper-

imental study on double-di�usive cellular convection

due to a uniform lateral heat ¯ux. Takao et al. [6] later

conducted a numerical study of this type of convection,

and found that heating induced distortion of the stable

vertical gradient. This in turn produced roll cells that

developed into a series of layers growing laterally from

the heated boundary. Under a uniform heat ¯ux, the

principal non-dimensional parameter governing the

stability of double di�usive convection is the same for

both the narrow slot problem and a semi-in®nite body of

¯uid.

Experimental results on natural convection in diver-

gent, convergent and parallel vertical channels show that

the ¯ow pattern in a divergent channel is signi®cantly

di�erent from that in a convergent channel [7]. For di-

vergent channels, there is a re-circulation loop occupy-

ing the remainder of the cross-section in which the

central portion is a down ¯ow and the outer portion is

an up ¯ow. On the other hand, in the convergent

channels, the ¯ow is only an up ¯ow.

Azevedo and Sparrow [2] studied the natural con-

vection in an open-ended inclined channel by exper-

iments with water. It was found that the secondary ¯ow

in the form of longitudinal vortices existed above a

threshold Rayleigh number for bottom heating only.

However, only two di�erent inclinations (30° and 45°)

were used to obtain the e�ect of a gravitational ®eld.

Recently, a great deal of numerical work on natural

convection has been reported. A literature review on the

three-dimensional ¯ow was reported by Vafai and

Ettefagh [8]. A numerical scheme based on GalerkinÕs
method of ®nite element formulation, in which the rel-

evant linear systems are solved by the conjugate residual

(CR) algorithm and the conjugate gradient square

(CGS) algorithm, has been utilized by Iyer and Vafai [9]

to simulate the natural convection in a cylindrical an-

nular with multiple perturbations on the inner and outer

cylinders. Iyer and Vafai illustrated that the presence of

multiple perturbations on the inner and outer cylinders

leads to a 50% increase in the overall heat transfer rate,

compared with the regular annular without any pertur-

bation. An explicit projection method has been used by

Lin and Lin [10] to investigate numerically the buoy-

ancy-induced vortex ¯ow and heat transfer in a mixed

convective ¯ow through a heated duct with slight duct

inclination. It was found that if the opposing-buoyancy

force is high enough, a slender reverse-¯ow zone occurs

in the duct core and a generation of vortex rolls exists in

the entry region.

This study examines the natural convection and

thermal instability for the two-dimensional ¯ow between

two parallel horizontal plates. The geometry and tem-

perature boundary conditions are illustrated in Fig. 1.

The open-ended parallel plates have a gap height H and

length L. The ¯uid with Prandtl number 0.73 between

the two plates is heated by three di�erent heating modes:

top plate heating, bottom plate heating and heating

from both plates. The two faces are open to the en-

Nomenclature

a1, a2 real number for pressure matrix

b1, b2 real number for pressure matrix

Cp speci®c heat at constant pressure (J/kg K)

Epx non-dimensional kinetic energy integration

over a vertical section

Eov non-dimensional kinetic energy integration

over the whole domain

g gravitational acceleration �m=s
2�

H gap height (m)
~i unit vector in x direction
~j unit vector in y direction

k thermal conductivity (W/m K)

L gap length (m)

n unit normal vector of a boundary surface

p pressure (Pa)

p1 ambient pressure (Pa)

Pr Prandtl number

Ra Rayleigh number

Raav average Rayleigh number

S gap ratio de®ned by H/L

u velocity component in x direction (m/s)

u0 velocity scale (m/s)

v velocity component in y direction (m/s)

Greek symbols

bT coe�cient of ¯uid thermal expansion (l/K)

dt non-dimensional time interval

DTw temperature di�erence (Tw ÿ T1) K

H non-dimensional temperature

w wall

q density (kg/m3)

Ñ2 Laplacian operator

Superscripts

n time level

l iteration level

Subscripts

b base

p perturbation

x x direction

ov overall

1 ambient
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vironment with a constant temperature T1 and pressure

P1. Results have been obtained under two-dimensional

unsteady laminar conditions for the base and pertur-

bation ®elds at Rayleigh numbers covering the range

from 2:87� 103 to 9:11� 104. The Boussinesq approx-

imation and constant thermal dynamical property as-

sumptions are applied to simplify the governing

equations. A fourth-order integration scheme and Bi-

CGSTAB algorithm for linear systems are used in the

simulation work. Thermal-¯uid instability and the time

evolution of local and average Nusselt numbers have

received special attention.

2. The mathematical model

Natural convection in the channel can be described

by the following equations:
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Assuming that the ¯uid has constant properties, in

addition to Boussinesq assumption, one obtains the

non-dimensionalized governing equations as follows:
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For convenience, the over-bars have been dropped,

where the Prandtl number Pr is accompanied by the

Rayleigh number Ra � gbT�Tw ÿ T1�H=va. In addition,

g and T1 are the gravitational acceleration and ambient

temperature, and Tw and bT are the wall temperature

and thermal-expansion coe�cient of ¯uid. The following

dimensionless parameters are used:

�u � u
u0

; �v � v
u0

; �t � tu0

H
; �x � x

H
; �y � y

H
;

�p � p
q1u2

0

; H � T ÿ T1
Tw ÿ T1

;
�9�

where u0 �
��������������������������������
gbT�Tw ÿ T1�H

p
and H are the velocity and

length scale, respectively.

Let H � Hb �Hp be decomposed into the base

and perturbed temperature with subscript b and p, re-

spectively. Assume that the gap ratio S�H/L is small

without any regard of the penetration e�ects of ambient

¯uid from the open-ended sides. Assuming the base

temperature to be independent of the horizontal coor-

dinate, the base temperature is governed by

oHb

ot
� 1����������

RaPr
p o2Hb

oy2
; �10�

while the perturbed temperature Hp is governed by

oHp
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�
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The boundary conditions for the base ®eld are

Hb�t; 0� �
0 for top heating;

1 for bottom heating;

1 for heating from both plates;

8<: �12�

and

Hb�t; 1� �
1 for top heating;

0 for bottom heating;

1 for heating from both plates:

8<: �13�

The boundary conditions for the perturbed ®eld are

Hp � u � v � 0 at y � 0 or y � 1;

u � v � 0 at x � 0 or x � Sÿ1:

�
�14�

Fig. 1. Schematic diagram of the open-ended channel between

two parallel horizontal plates.
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3. The numerical method

To simplify the computational complexity of the

momentum equations, a fractional algorithm is selected.

The numerical method has a ®rst-order accuracy in the

discretization of the time-dependent term, although a

higher-order integration scheme has been used to deal

with the intermediate velocities.

The equation of base temperature #b is ®rst di-

scretized with the central di�erence scheme in space and

®rst-order forward di�erence in time. The resulting tri-

diagonal linear system is solved by LU decomposition.

Forward and back substitutions lead the whole solution

to be encoded very concisely. However, due to non-lin-

earity, the perturbed temperature Hp is evaluated with

an explicit scheme.

In order to describe the computational procedure

more conveniently, it is de®ned that
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By freezing the velocity at previous time level n and

subsequently using the predictor of the fourth-order

Adams scheme, one obtains

Hn�1
p � Hn

p �
dt
24
�55F3�un; vn; pn;Hn�

ÿ 59F3�unÿ1; vnÿ1; pnÿ1;Hnÿ1�
� 37F3�unÿ2; vnÿ2; pnÿ2;Hnÿ2�
ÿ 9F3�unÿ3; vnÿ3; pnÿ3;Hnÿ3��: �17�

Hn�1
p is used to predict the intermediate velocity ®eld

�~un�1; ~vn�1� with the same Adams fourth-order predictor.

Hp should be corrected after the velocity at new time

level, n� 1, has been evaluated by the fourth-order

Adams corrector, i.e.,

Hn�1
p � Hn

p �
dt
24
�9F3�un�1; vn�1; pn�1;Hn�1�
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ÿ 5F3�unÿ1; vnÿ1; pnÿ1;Hnÿ2�
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The formulations for calculating the intermediate

velocities are given as

~un�1 � un � dt
24
�55F1�un; vn; pn;Hn�

ÿ 59F1�unÿ1; vnÿ1; pnÿ1;Hnÿ1�
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ÿ 9F2�unÿ3; vnÿ3; pnÿ3;Hnÿ3��; �19�

where �~un�1; ~vn�1� should be corrected with continuity

equation to maintain the divergence of velocity at a

given mesh lattice tending to zero. The following

pressure equation also has to be solved for velocity

correction,

r2p � 1

ot
o~u
ox

 
� o~v

oy

!
: �20�

A conjugate-gradient algorithm Bi-CGSTAB devel-

oped by Von Der Vorst ([11]) is used. The pressure

equation should satisfy a second-type homogeneous

boundary condition, where the boundary is not regular

and the discretized coe�cient matrix for pressure may be

asymmetric. The advantage of BiCGSTAB over CC

(conjugate gradient) algorithm is that it not only con-

verges more quickly, but it also maintains a smooth-

converging variant. Discretizing the pressure, Eq. (20)

yields
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* �

a11 a12 � � � a1N

a21 a22 � � � a2N

..

. ..
. . .

. ..
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..
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where the coe�cient matrix A is a ®ve-diagonal matrix.

The element on the main diagonal can be written as

aii � a1 � a2

dx2
� b1 � b2

dy2
; �22�

with the remaining diagonal elements represented by

aiÿ1i � ÿ a1

dx2
ai�1i � ÿ a2

dx2
;

aijÿI � ÿ b1

dy2
aij�I � ÿ b2

dy2
;

�23�

when the total mesh number in the domain of compu-

tation is N � I � J .

For the second-type homogeneous boundary con-

ditions, the parameters are written as follows:
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a1 � a2 � b1 � b2 � 1 for lattice point not adjacent

to a wall;

a1 � 0 for~n �~i � 1;

a2 � 0 for~n �~i � ÿ1;

b1 � 0 for~n �~j � 1;

b2 � 0 for~n �~j � ÿ1;

8>>>>>>><>>>>>>>:
�24�

where ~n is the unit normal vector of a wall surface, and
~i;~j are, respectively, the unit vectors in the x and y di-

rections. The pressure at n� 1 is employed to obtain the

velocity at a new time level

un�1 � ~un�1 � dt
op
ox

� �n�1

;

vn�1 � ~vn�1 � dt
op
oy

� �n�1

:

�25�

To keep the solution physically true, the space de-

rivatives are discretized in a staggered-mesh lattice sys-

tem with the ®rst-order upwind scheme. The choice of dt

needs to ful®ll the numerical stability condition; i.e., the

Courant number should be less than unity.

4. Results and discussions

The computation has been carried out for Rayleigh

number covering the range from 2:87� 103 to 9:11� 104

for the three di�erent heating modes. The wall surface

temperature di�erence DTw and gap length L are set to

be 60 K and 0.5 m, while the gap height H ranges from

0.0079 m to 0.025 m. The air in the gap has an initial

temperature of 283 K, which is the same as the ambient

temperature T1. The computational domain is par-

titioned to form a near-uniform space staggered grid

system, while a uniform time interval dt is set in the

range from 8:0� 10ÿ4 to 2:0� 10ÿ3 so that the fourth-

order Adams integration scheme can be used. A pre-

liminary four-step calculation was undertaken by the

fourth-order Runge±Kutta integration scheme to pro-

vide enough data for the Adams scheme. An overall

space grid number N of 100� 60 was found to give grid-

independent numerical results. The convergence criteria

for the conjugate gradient Bi-CGSTAB scheme was

chosen according to the formulation

kA~p ÿ~dkl

kAp
*ÿ d

*

k0
6 1:0� 10ÿ6:

The iteration converges after one or two iterative steps

for most cases, but sometimes the convergence needs

more steps, especially for the natural convection under

the conditions of bottom heating and heating from both

plates.

4.1. Base temperature

The dominant feature of Nusselt numbers is the base

temperature ®eld, which is independent of the horizontal

coordinate with respect to the assumption of the small

gap ratio S. The base temperature is governed by a

transient one-dimensional di�usion equation rep-

resented by Eq. (10). Figs. 2(a)±(c) illustrate the base

temperatures for three di�erent times, i.e. t� 2.5, 7.5,

12.5 when the Rayleigh number is 1:65� 104. The heat-

transfer rate continues to drop with time since the

temperature gradient in the vicinity of the wall decreases

with time monotonically. It shows that, for the top

heating and bottom heating modes, the ¯uid motion in

the region of the unheated plates may not be sensitive to

the base-temperature ®eld before t� 2.5, as the tem-

perature in the region is almost the same as the ambient

temperature. For heating from both plates, the ¯uid in

the gap core region has a relatively lower base tem-

perature. The gradient of the base temperature has a

signi®cant e�ect on the perturbed temperature that in-

duces the ¯uid motion. For the top heating case, the

positive base temperature gradient seems to play a

dampening role in con®ning the growth of the small

Fig. 2. The base temperature distributions in the y direction

when Ra� 91 113 for: (a) top heating; (b) bottom heating;

(c) heating from both plates.
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perturbations to maintain stable ¯ow patterns. This is

similar to the e�ect of the viscous terms.

4.2. Average and local Nusselt numbers

For the laminar ¯ow regime in the case of top heat-

ing, the calculated average Nusselt number, which de-

pends mainly on the base temperature gradient near the

wall, is shown in Figs. 3(a) and (b). It is found that a

larger Rayleigh number leads to a relatively higher

Nusselt number. Fig. 3(a) shows that the average Nus-

selt number during the initial stage (time less than 5) is

much higher than that of the near-steady state. This

means that the heat transfer through the wall surface

was intensi®ed by natural convection. After a rapid de-

crease, the average Nusselt number decays gradually,

which seems to indicate a linear characteristic. For

bottom heating and heating from both plates, the vari-

ation of average Nusselt number is almost the same as

the case of top-heating mode since there is no graphical

di�erence in the Rayleigh numbers selected. Fig. 4 shows

the relationship of the x-denoted local Nusselt number

with x, linearly. It is seen that larger Rayleigh numbers

cause larger local Nusselt numbers for a given x. In

order to verify the computed results, the results pre-

viously reported for water natural convection [1] were

used. The Prandtl number in the present computation

was changed from 0.73 to 6.8 for this purpose. As shown

in Fig. 5, the current curve of Nusselt numbers is very

close to the curve given by Rossby, indicating that a

good agreement is achieved for the bottom heating case,

i.e. the Benard convection.

4.3. Thermal ¯uid ¯ow properties

For di�erent cross-sections, when x is given, the in-

tegration of its kinetic energy is de®ned as

Epx � 1

2

Z 1

0

�u2 � v2� dy;

which is demonstrated in Figs. 6(a) and (b). In Fig. 6(a),

for the top heating case, the distribution of the kinetic

energy along x direction at time t� 2.5 and 5.0 with

Fig. 3. Average Nusselt numbers vs time for four Rayleigh

numbers.

Fig. 4. Local Nusselt numbers vs x for four Rayleigh numbers.

Fig. 5. Comparisons between the computational results in this

paper, Rossby's experimental results and Schneck's computa-

tional results for the bottom heating case.

Fig. 6. Cross-sectional integration of kinetic energy in x di-

rection for: (a) top heating for Ra� 16 000; (b) bottom heating

for Ra� 19680.
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Rayleigh number Ra� 16 000 is illustrated. The kinetic

energy appears as a space ¯uctuation due to the initial

temperature perturbation. This is evaluated by the

multiplying series of the Gaussian random number

having a deviation of unity with a small number of 10ÿ5.

The thermal induced-¯ow kinetic energy integration has

a magnitude of the order of about 10ÿ12 at time t� 2.5,

but decreases with time rapidly. By contrast, the kinetic

integration grows dramatically as the time changes from

t� 2.5 to t� 5.0 for the bottom heating case with Ray-

leigh number Ra� 19 680 (see Fig. 6(b)). It is seen that

¯uctuating performance seems to be dependent on the

initial thermal perturbation for both cases. However, the

di�erent time-changing trend for kinetic energy is inti-

mately related to the base temperature gradient.

Figs. 7(a) and (b) show the time evolution of the overall

kinetic energy in the computational domain, which is

de®ned as

Eov �
Z Sÿ1

0

Epxdx � 1

2

Z Sÿ1

0

Z 1

0

�u2 � v2�dy dx: �26�

It is revealed that for the top heating case, the in-

duced ¯ow becomes stable. On the other hand, for the

bottom heating case, the overall kinetic energy seems to

follow an exponential trend, indicating that an initial

temperature perturbation causes thermal ¯uid ¯ow in-

stability.

4.4. Perturbed ¯ow and temperature ®eld

Signi®cant di�erent ¯uctuating patterns can be seen

from Fig. 8 for the stable and unstable thermally-in-

duced ¯ows. For the top heating case, when t� 20, the

stable-heating mode makes the wavelength greater but

with very small magnitudes. For the bottom-heating

mode, the curves are shown in Fig. 8(b), corresponding

to time t� 15.0. The negative base temperature leads

to the perturbations ¯uctuating in space with short
Fig. 7. The total kinetic energy for: (a) top heating; (b) bottom

heating.

Fig. 8. (a) Distributions of perturbation variables in x direction at y� 0.5 for top heating when Ra� 46 650; (b) distributions of

perturbation variables in x direction at y� 0.5 for bottom heating when Ra� 19 680.
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wavelength and quite larger magnitudes. Three di�erent

¯ow patterns have been illustrated in Figs. 9(a)±(c) for

top heating, bottom heating and heating from both

plates at time t� 10.0. It should be noted that although

there are many rolls in the gap for the top heating case,

the roll cell intensity is very small when compared with

those for other cases. The energy of these roll-cell decays

with time and ®nally the e�ect of initial thermal distur-

bance disappears. The ¯uctuating performance of the

perturbations is closely related to these ¯ow patterns

shown in Fig. 9.

5. Conclusions

In contrast to the traditional approach of the insta-

bility study, which concentrates on solving an eigenvalue

problem to obtain the neutral stability curves, a nu-

merical method is practiced to calculate the overall

perturbation kinetic energy with regard to the variation

trend with time for the judgement of a ¯ow ®eld

stability. Veri®cation has been made for the bottom

heating case by comparing average Nusselt numbers

with previous numerical and experimental results. Good

results are achieved for the thermally induced natural

convection of water between two horizontal plates when

the bottom plate is heated.

The thermal ®eld is decomposed into two parts de-

scribed by the base and perturbed temperatures. The

velocity perturbation is induced purely by the tempera-

ture perturbation. Numerical study on the fractional

algorithm embedding the conjugate gradient scheme Bi-

CGSTAB was made to reveal the thermal ¯uid insta-

bility. It is found that for a small gap ratio of a channel

grouped by two parallel horizontal plates, neglecting the

open-ended side e�ect, the base temperature was gov-

erned by a transient di�usion equation. The base tem-

perature dominates the average Nusselt number. The

average Nusselt number appears to rapidly decay in the

initial heating stage, and then shows almost a linear

decreasing trend.

The thermal perturbation induces a ¯ow-®eld ¯uc-

tuation. The kinetic energy of the perturbed ¯uid motion

shows di�erent variation trends with time. For the

top-heating mode, the overall kinetic energy ®nally

approaches a gradually decaying stage, while for the

bottom heating case, the kinetic energy seems to grow

exponentially, indicating that under this heating mode,

the thermal ¯uid motions will become unstable.
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